
On the Recall of Static Call Graph Construction in Practice
Li Sui

l.sui@massey.ac.nz
Massey University

Palmerston North, New Zealand

Jens Dietrich
jens.dietrich@vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Amjed Tahir
a.tahir@massey.ac.nz
Massey University

Palmerston North, New Zealand

George Fourtounis
gfour@di.uoa.gr

University of Athens
Athens, Greece

ABSTRACT
Static analyses have problemsmodelling dynamic language features
soundly while retaining acceptable precision. The problem is well-
understood in theory, but there is little evidence on how this impacts
the analysis of real-world programs. We have studied this issue for
call graph construction on a set of 31 real-world Java programs using
an oracle of actual program behaviour recorded from executions
of built-in and synthesised test cases with high coverage, have
measured the recall that is being achieved by various static analysis
algorithms and configurations, and investigated which language
features lead to static analysis false negatives.

We report that (1) the median recall is 0.884 suggesting that stan-
dard static analyses have significant gaps with respect to the pro-
portion of the program modelled (2) built-in tests are significantly
better to expose dynamic program behaviour than synthesised tests
(3) adding precision to the static analysis has little impact on re-
call indicating that those are separate concerns (4) state-of-the-art
support for dynamic language features can significantly improve
recall (the median observed is 0.935), but it comes with a hefty
performance penalty, and (5) the main sources of unsoundness are
not reflective method invocations, but objects allocated or accessed
via native methods, and invocations initiated by the JVM, without
matching call sites in the program under analysis.

These results provide some novel insights into the interaction
between static and dynamic program analyses that can be used to
assess the utility of static analysis results and to guide the develop-
ment of future static and hybrid analyses.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;
Software defect analysis; Dynamic analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380441

KEYWORDS
static program analysis, testing, soundness, java, call graph con-
struction, test case generation

ACM Reference Format:
Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the
Recall of Static Call Graph Construction in Practice. In 42nd International
Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3377811.3380441

1 INTRODUCTION
Static program analysis is widely used to detect faults (such as bugs
and vulnerabilities) in software early in its life cycle, when correc-
tive action is still relatively inexpensive. Static analysis constructs
and reasons about a model of program behaviour. It is highly de-
sirable that this process (1) does not miss faults, i.e., it produces
no false negatives and is therefore sound and (2) that it does not
produce false alerts, i.e., it produces no false positives and is there-
fore precise. Unfortunately, Rice’s theorem states that such a perfect
analysis is generally not possible [53], so in practice, analyses aim
for reasonable trade-offs between soundness and precision, and in
addition to this, performance.

Unsoundness is usually attributed to the ubiquitous presence
of dynamic programming language features in modern program-
ming languages, used to implement generic components that can
adapt to and be reused in different contexts. For instance, in call
graph construction, the static analysis computes a directed graph
with functions (methods, procedures) being represented by vertices,
and invocations being represented by edges. With such a model,
questions relevant for program security such as “can a function
performing some I/O operation be reached from a program entry
point?” or questions related to maintenance such as “what is the
impact of renaming or otherwise refactoring a method?” can be
answered. However, if reflection is used where a reference to a
target method is computed at runtime and the language contains a
feature to invoke function references (such as Smalltalk’s perform,
JavaScript’s eval or Java’s invoke), then it becomes difficult for a
static analysis to accurately model those invocations. The emphasis
is on accuracy, as false negatives can always be avoided by sacri-
ficing precision. For instance, a static analysis could just resolve a
dynamic call site to all possible methods, therefore avoiding false
negatives by accepting (a large number of) false positives.

https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Li et al.

Problems with soundness have attracted more attention recently
after the publication of the Soundiness Manifesto [42]. Most of
the research on the topic is on improving static analysis to model
a particular dynamic feature such as reflection [41, 56], dynamic
proxies [21], or invokedynamic [11, 22], or by providing a dynamic
pre-analysis to capture additional program behaviour that is then
added into the static analysis [12, 26, 60].

In this paper, we measure the impact dynamic language features
have on the soundness of statically constructed call graphs. In
particular, we set out to answer the question: “How unsound is static
call graph construction in practice”, using call graph construction
as a case study as this is a foundational analysis underpinning
many higher-level static analyses. Since the term sound is usually
considered as binary (i.e., something is either unsound or sound),
we use the term recall instead: we measure the recall of static call
graph construction as the percentage of known methods invoked
present in the statically constructed call graph. Unfortunately, recall
cannot be measured exactly as this would require prior knowledge
of all possible program behaviours. However, we can approximate
possible program behaviour with known program behaviour. We refer
to this as the oracle, and measure and report recall with respect to an
oracle of such known behaviour. More specifically, we investigate
the following research questions:
RQ1 What is the the recall of static call graph construction with

respect to an oracle of actual program behaviour ?
RQ2 What is the impact of context sensitivity on recall ?
RQ3 How effective is state-of-the-art reflection support ?
RQ4 Which particular language features cause static analysis false

negatives ?
We study this problem for Java programs, as Java is one of the

most popular programming languages, and it also is the focus of
much of the existing work in static analysis including recent work
to model its dynamic language features. The static analysis frame-
work used is doop [13] as it provides implementations of many
standard call graph construction algorithms; and offers state-of-the-
art support for several dynamic language features [21, 22, 56].

The results presented here can guide static analysis users to
better understand what (not) to expect from static analysis, and
how to interpret and use its results. The results are also useful for
static analysis tool builders to guide themwhere to best focus efforts
to improve the recall for their analysis. Furthermore, it provides
some insights into the potential of hybrid analyses.

2 RELATEDWORK
2.1 Call Graph Construction
There is a large body of research into call graph construction, al-
gorithms mainly differ in achieving different trade-offs between
precision and runtime. Tip and Palsberg [63] conducted an earlier
study comparing the main approaches. A main problem in call
graph construction for Java and related languages is how they deal
with virtual method invocations that are only resolved at runtime.
Class Hierarchy Analysis (CHA) [30] is a lower-precision fast al-
gorithm that uses class hierarchy information to resolve virtual
methods. Rapid Type Analysis (RTA) [9] also takes allocation sites
into account. Variable Type Analysis (VTA) models the assignments
between different variables by generating subset constraints, and

then propagates points-to sets of the specific runtime types of each
variable along these constraints [61]. k-CFA analyses [55] add vari-
ous levels of call site sensitivity to the analysis in order to further
improve precision.

2.2 Handling of Dynamic Language Features
Reflection is a dynamic language feature in Java and similar lan-
guages, first introduced in LISP and Smalltalk [20, 58]. It’s impact
on static analysis has been comprehensively studied. Livshits et
al. [43] used points-to analysis to approximate the targets of re-
flective call sites as part of call graph construction. Li et al. [38]
proposed elf in order to improve the effectiveness of Java pointer
analysis tools. Smaragdakis et al. [56] further refined this approach
in order to improve both recall and performance.Wala [19] has built-
in support for certain reflective features such as Class::forName,
Class::newInstance, and Method::invoke.

The invokedynamic instruction is another dynamic language
feature aimed at providing developers with more control over
method dispatch, and mainly used to compile lambdas. Bodden [11]
proposed a soot extension that supports reading and rewriting
invokedynamic byte codes. The opal static analyser also provides
support for invokedynamic through replacing invokedynamic in-
structions which use the Java LambdaMetaFactory with a stan-
dard invokestatic instruction [1]. Wala provides support for
invokedynamic generated for Java 8 lambdas1. Like the different
approaches to handle reflection, support for invokedynamic often
does not address the language feature as such, but only particular
usage patterns. In particular, the above-mentioned approaches as-
sume that a certain bootstrap method is used. This works well as
long as this is how the respective feature is used in real-world Java
programs (e.g., making assumptions about the byte code emitted
by the current Java compiler), but fails if byte code produced by
non-Java or non standard Java compilers is analysed [59]. This is a
relevant problem as the JVM has become a polyglot platform. Sup-
port for invokedynamic has been very recently added to doop [22],
however, this was not yet available when the experiments presented
here were conducted.

Fourtounis et al. [21] have recently proposed the first analysis
for dynamic proxies, based on the doop framework. This is one of
the features we have used to evaluate the level of recall that can be
achieved by a static analysis with support for dynamic language
features.

2.3 Hybrid Analyses
Hybrid analyses aim at combining static and dynamic techniques
in order to offset their respective weaknesses in terms of soundness
and precision [18]. In particular, a dynamic pre-analysis can be
used to record executions, and then the information recorded can
be fed into a static analysis, for instance, by modifying the original
code (e.g., “unreflecting”), or by creating a spec that can be used
directly to augment a static analysis model (e.g., by generating
additional facts for datalog-based static analysers). Tamiflex by
Bodden et al. [12] is such an approach where a Java program is
instrumented, and method invocations are recorded. The original
code is then enriched with “unreflected” code, this approach has
1 https://goo.gl/1LxbSd and https://goo.gl/qYeVTd, both accessed 14 Jan 19

https://goo.gl/1LxbSd
https://goo.gl/qYeVTd

On the Recall of Static Call Graph Construction in Practice ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

the advantage of being tool-agnostic. Grech et al. [26] proposed
heapdl. This tool is conceptually similar to tamiflex but also uses
heap snapshots to further improve recall.Mirror by Liu et al. [41] is
another hybrid analysis aimed at resolving reflective call sites. Sui
et al. [60] proposed a rather different approach to extract additional
edges from stack traces reported in online error reports. While the
number of invocations found with this method is small, some of
them were indeed missed by static analysis tools, and the authors
argue that those are “high-value” edges as they were involved in
bugs or vulnerabilities.

In general, all of these methods can boost recall but are not
suitable to make an analysis sound as they only capture a fraction
of actual program behaviour. Dietrich et al. [17] generalised this idea
and discussed several general approaches of obtaining soundness
oracles that can be used to assess and improve the recall of static
analysis.

2.4 Empirical Studies
Murphy et al. [46] compared the results of 9 static analysis tools
applied to three C sample programs. They found that the extracted
call graphs varied in size, which makes them potentially unreliable
for developers to use. Lhoták [35] proposed an infrastructure to
facilitate the assessment and comparison of static analysis tools,
this includes a call graph interchange format.

Landman et al. [33] studied the challenges faced by static analy-
sers to model reflection in Java. They found that the parts of the
reflection API that prove problematic for static analysers are widely
used. They used a lightweight static analyses based on detecting
patterns in the abstract syntax tree of programs for their analy-
sis. They opted for a sound under-approximation in their pattern
detection, similar to our oracle construction. The main difference
to our approach is that they are not able to quantify the impact
reflection has on the actual static analysis models, as they are not
computing an oracle of actual program behaviour. Our study also
aims at including other source of unsoundness, not just reflection.

Mastrangelo et al. [45] looked into how one of the more exotic dy-
namic language features we also study, the low-level sun.misc.Un-
safe API, is used in practice.

More recently, two conceptually similar micro-benchmarks were
proposed to describe the impact of dynamic language features on
call graph construction by Reif et al. [52] and Sui et al. [59]. The
synthetic benchmark programs in both studies are minimalistic by
design, and facilitate the construction of an oracle of actual program
behaviour by hand. The studies then analyse how common static
analysers perform in analysing the respective programs. An inter-
esting feature of the Sui study is that it identifies that the notion of
actual program behaviour needs to take the JVM used into account,
as the resolution of reflective call sites is not completely determined
by the the rules in the JVM specification, and different mainstream
JVMs interpret them differently. We discuss the impact that this has
on our methodology briefly in Section 3.5.5. Pontes et al. [49] have
recently systematically studied cases of under-determined specifi-
cations and non-conformances in the reflection API implemented
by different JVMs.

Judge [51] builds upon [52], and also contains a case-study ex-
periment on xalan in order to assess the recall of the static call

graphs constructed by several static analysis tools. This is close to
what we set out to achieve in this paper, however, we work with a
larger data set in order to discover generalisable patterns, and use
a different highly automated method to construct the oracle and
categorise false negatives.

Karim and Lhoták studied the construction of call graphs for the
application part of programs [3]. They used a methodology similar
to ours to assess the soundness of the statically constructed call
graphs against recorded program executions. They used a smaller
data set comprising programs from dacapo 2006 [10] and SPEC
JVM 98 [2]. We systematically study soundness for whole program
analysis, study the impact of reflection analysis that was not avail-
able when the Karim and Lhoták study was conducted, using a
much richer model of program behaviour, and classify sources of
unsoundness.

3 METHODOLOGY
In this section, we discuss the methodology used in our study. An
overview of the process is given in Figure 1. This study is based on
the comparison of two models – a static model computed by means
of a static analysis (the static call graph – SCG), and a dynamic
model (the context call tree - CCT), constructed by observing an
executing program.

extract (built-in and generated) tests

unreflect tests, generate entry point for static analysis

build SCGs with doop instrument and run
program, record CCTs

reduce CCTs

extract reachable
methods from SCGs

extract reachable
methods from CCTs

annotate CCTs with FNs
and labels

compute recall cause analysis

diff reachable methods

Figure 1: Study setup overview (SCG - static call graph, CCT
- context call tree, FN - false negative)

3.1 Oracle Construction
Our study hinges on the notion of a soundness oracle (oracle for
short) – a known ground truth of actual program behaviour to

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Li et al.

which the statically computed call graph can be compared to. As the
focus of our study is on call graphs, a soundness oracle consists of
vertices in a call graph representingmethods. Methods are identified
and modelled using a combination of the name of the class defining
the method, the method name and a descriptor as defined in the
Java language specification [40, Sect. 4.3.3] to model overloading.
Call graph edges consist of pairs of (source and sink) methods.

In order to build oracles of actual program behaviour to compare
static analysis models with, programs need to be exercised in a way
that exposes as much possible program behaviour as possible. Then
an oracle can be generated by monitoring the executing program,
and recording method invocations by means of instrumentation.
Unfortunately, many (Java) programs do not have main methods
as they are intended to be used as libraries, or be executed in con-
tainers such as application servers. Even if a program had a main
method, it would often not be clear how to supply arguments to
obtain meaningful (e.g., high-coverage) program runs. On the other
hand, unit tests are widely used, and provide suitable entry points
to trigger program executions. There are two approaches to source
tests: either to use tests built-into the program to be analysed, or to
generate (synthesise) tests by a tool. Test case generation [8, 15, 48]
is a viable option as it can achieve high coverage in particular if it is
feedback-directed, and its main limitation (to create meaningful as-
sertions) is irrelevant if we just want to observe program behaviour,
without checking the program for correctness.

We argue that built-in test cases still have a special quality to
them as they represent intended program behaviour. Generated
tests still represent potential program behaviour that is valuable
to consider (e.g., in vulnerability detection with fuzzing), but there
is another quality in that intended behaviour better reflects the
behaviour end users will encounter when the software is deployed,
and we were therefore interested to study this separately. However,
by also being able to use generated tests in addition to built-in
tests, we obtain a richer model of program behaviour, reflected in
increased coverage. The programs in the data set we used have both
built-in and generated tests, see Section 3.2 for details. Figure 2
depicts the branch coverage obtained for the programs investigated
using built-in, generated and combined tests. In general, better
coverage is achieved with generated tests. But this figure also indi-
cates that when combining generated and built-in tests, coverage
significantly increases, indicating a certain level of orthogonality
between those tests. This is somehow surprising – both seem to
exercise different parts of the programs under test.

We make the assumption here that high (branch) coverage is
correlated with more methods being invoked while the program
executes (i.e., higher method coverage). This assumption is based on
the observation that (1) with higher coverage more invocation in-
structions become reachable and (2) as more allocation sites (object
creation sites) become reachable, more methods become reachable
when virtual invocations are resolved.

3.2 Dataset Acquisition
We have used the xcorpus data set [16] for our experiments for
the following reasons: (1) it is based on the widely used qualitas
corpus [62] that consists of a large curated (to be representative)
set of real-world Java programs (2) it has a built-in driver with high

Figure 2: Branch coverage obtained by executing built-in,
generated and combined tests in %, for the data set of 31 pro-
grams described in Section 3.2

coverage for each program, obtained by using the evosuite test case
generation [23] (3) programs in the xcorpus use several dynamic
language features, the respective analysis can be found in [16], and
finally (4) the xcorpus has been used recently in related work by
different authors [21, 51, 59]. Of the 75 programs in the xcorpus ,
we study the following 31 programs that have at least one built-
in junit test: castor-1.3.1, checkstyle-5.1, commons-collections-3.2.1,
drools-7.0.0.Beta6, findbugs-1.3.9, fitjava-1.1, guava-21.0, htmlunit-2.8,
informa-0.7.0-alpha2, javacc-5.0, jena-2.6.3, jFin_DateMath-R1.0.1,
jfreechart-1.0.13, jgrapht-0.8.1, ApacheJMeter_core-3.1, jrat-0.6, jre-
factory-2.9.19, log4j-1.2.16, lucene-4.3.0, mockito-core-2.7.17, nekohtml-
1.9.14, openjms-0.7.7-beta-1, oscache-2.4.1, pmd-4.2.5, quartz-1.8.3,
tomcat-7.0.2, trove-2.1.0, velocity-1.6.4, wct-1.5.2, weka-3-7-9, mockito-
core-2.7.17.

3.3 Static Entry Point Generation
Usually, junit test cases are executed by employing a junit runner.
Junit will then detect tests and fixtures based on the presence of
annotations (junit4) or naming patterns (junit3), and invoke the
respective methods.

The fact that junit uses reflection to invoke tests poses a signifi-
cant problem for static analyses – this is the very problem we are
investigating. We therefore created a light-weight pre-analysis and
code generator in order to unreflect the junit test cases and create
static drivers. Listings 1 and 2 illustrate the process. The unreflected
code for each test case runs in its own exception handler to ensure
that test cases resulting in exceptions or catchable errors did not
prevent the execution of subsequent tests. This would fail if tests
resulted in uncatchable throwables, such as out of memory errors,
preventing following unreflected tests to execute. We monitored
for those cases by logging, and found that those cases are very rare.

1 import org . j u n i t . ∗ ;
2 public c l a s s Tes t 42 {
3 pr ivate T t e s t e d = null ;
4 @BeforeClass public void b e f o r eC l a s s () { } ;
5 @Before public void se tUp () { t e s t e d = new T () ; }
6 @Test public void t e s t () { t e s t e d . foo () ; }
7 @After public void tearDown () { t e s t e d = null ; }
8 @AfterC lass public void a f t e r C l a s s () { } ;
9 }

Listing 1: Original JUnit test case

On the Recall of Static Call Graph Construction in Practice ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

1 public c l a s s Dr i v e r _Te s t 4 2 {
2 public s t a t i c void main (S t r i n g [] a r g s) throws Excep t i on {
3 Te s t 42 t e s t = new Tes t 42 () ;
4 t e s t . b e f o r eC l a s s () ;
5 t e s t . s e t up () ;
6 t e s t . t e s t () ;
7 t e s t . tearDown () ;
8 t e s t . a f t e r C l a s s () ;
9 }
10 }

Listing 2: Unreflected JUnit test case (simplified)

JUnit has some features that are difficult to capture by unreflec-
tion, such as custom rules and runner. Our unreflection technique
supports the following junit features (package names omitted), sup-
porting both junit3 and junit4 conventions.

(1) test methods annotated with @Test
(2) non-static fixtures annotated with @Before or @After
(3) static fixtures annotatedwith @BeforeClass or @AfterClass
(4) tests annotated with @RunWith(Parameterized.class)
(5) test methods in subclasses of junit.framework.TestCase

complying to junit3 test method conventions
(6) junit3 fixtures, i.e. setUp() and tearDown() implemented

in subclasses of junit.framework.TestCase
We removed junit and evosuite framework classes from the anal-

ysis scope as their presence would have added additional vertices
and edges to the oracle (not just the methods defined in the re-
spective frameworks, but also (standard) library function invoked
through those), and therefore would have biased the recall results.
This required the mechanised removal of some call sites from tests,
in particular invocations of junit assert* methods. The coverage
data shown in Figure 2 was obtained by invoking the unreflected
tests with the generated driver, measured with jacoco 2.

In addition to the drivers we set up for each test class, we also
generated a global driver class with a single mainmethod calling all
generated test main methods, to be used as a single static analysis
entry point.

3.4 Static Call Graph (SCG) Construction
The static model is the static call graph (SCG), a directed graph
(V ,E) consisting of a set of verticesV and a set of edges E ⊆ V ×V .
Vertices represent methods, while edges represent invocation rela-
tionships. For our study, we used the doop framework with different
configurations to construct the call graph. doop implements a wide
range of algorithms including support for context sensitivity, and
several dynamic language features, this support is comparable to or
exceeds similar features available in alternative frameworks such as
soot [32] and wala [19] as demonstrated in recent benchmark-based
comparative studies [52, 59]. The doop version used was 4.14.4. We
used the following options for the respective analyses:

• base analysis: -a context-insensitive

• context-sensitive analysis: -a 1-call-site-sensitive

• reflection analysis: -a context-insensitive -reflection

--reflection-classic --reflection-dynamic-proxies

--reflection-method-handles --simulate-native-returns

In all cases, the -main option was used with the generated entry
point as argument.

2https://www.eclemma.org/jacoco/

3.4.1 Bytecode Acquisition. In order to run the static analysis we
needed the byte code of the program and the library the program
depends on. This required us to first resolve the symbol references
to dependencies in the xcorpus programs. For each program, we
used the ivy resolve task to fetch dependencies from Maven and
in some cases (project-) local repository, and made local copies of
these libraries available for the static analysis.

3.4.2 Library Dependencies. A crucial decision to be made when
setting up the static analysis is the handling of libraries. We run
the static analyses in two modes:

(1) superjar mode: To make all library classes part of the program
to be analysed, this was done by building a single “super” jar
containing all library classes.

(2) library mode: Library code is handled differently by only
representing the parts of the library used by the program.
This is supported by doop , but introduces some additional
unsoundness. The main reason is that doop relies on the
facts soot [32] generates from (library) code, and if library
code is only accessed through reflection or similar means,
those facts set will be incomplete. Even if doop is used with
reflection support, the analyses may still fail to generate
some call graph edges.

Handling libraries and the main program differently is a widely
used technique in static program analysis [4, 5, 50]. By investigating
both settings, we are in a position to measure the impact this has
on the analysis recall.

3.5 Context Call Tree (CCT) Construction
The dynamic model used in order to provide the oracle is the calling
context tree (CCT) [6]. A vertex in the CCT is an invocation, i.e. a
pair consisting of a method and a unique generated id. The root of
this tree is an entry point (such as “main”). In order to construct
the CCTs, stacks were monitored by means of instrumentation
with ASM [14]. On method entry and exit, stack push and pop
instructions were logged, this information was then used to build
the CCTs once the method executions had ended. For each entry
point and thread, a separate CCT was created.

Using CCTs enabled us to precisely model method invocations. In
particular, we were interested in whether certain methods flagged
as false negatives would remain reachable from a program entry
point once reflective methods were removed in order to measure the
impact these reflective methods have on recall. This kind of cause
analysiswould not have been possible hadwe used a coarse dynamic
call graph (DCG) representation that allows spurious paths.

3.5.1 Reducing CCTs. The downside of using CCTs however is
that they quickly grow very large. Even fairly simple programs
quickly create CCTs of several GBs in size. We investigated several
techniques to reduce the size of the CCTs, and implemented a simple
loop reduction.Whenmethods are invoked in loops, a new branch is
created for each iteration. Often, those branches are isomorphic and
therefore redundant: for each branch, the samemethods are invoked
in the same order 3. We removed redundant branches caused by

3More precisely, we can define two branches with roots v1 = (method1, id1) and
v2 = (method2, id2) as isomorphic as follows: if the vertices don’t have successors,

https://www.eclemma.org/jacoco/

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Li et al.

loops 4. In most cases, this reduced the size of CCTs dramatically by
order of a magnitude. Removing redundant branches does not affect
the cause analysis as the reachability of methods is not affected.

We also encountered branches spawned by our instrumentation,
with invocations of sun.instrument.InstrumentationImpl::
transform as root. Those branches were removed to ensure that
the experimental setup did not bias the results.

3.5.2 Threads. Threads were modelled by building a separate CCT
for each thread. The code inserted via instrumentation generates
thread identifiers using a combination of thread id and identity
hash code of the current thread. Those identifiers and the thread
names were attached as meta data to the CCTs, this information
was then used later in the cause analysis (Section 3.7) in order to
identify system threads by name.

3.5.3 Exceptions. The semantics of exception handling [40, sect
2.10] was modelled by instrumenting exception handlers to log the
removal of methods from the stack when an exception is propa-
gated. We did not track unhandled exceptions. While this can be
done by instrumenting uncaughtException methods in classes
implementing the Thread.UncaughtExceptionHandler, this was
not necessary as the JVM specification states that “If no suitable
exception handler is found before the top of the method invocation
chain is reached, the execution of the thread in which the exception
was thrown is terminated” [40, sect 2.10]. I.e., there is no further ma-
nipulation of the respective stack that would lead to the recording
of additional invocations.

3.5.4 Native Methods. Native methods cannot be directly instru-
mented. We therefore run a simple pre-analysis to identify call
sites that resolve to native methods, and instrument the respective
call sites (e.g. invoke* instructions). In rare cases where a virtual
method can be resolved to both native and non-native methods,
this approach could fail to record some edges, resulting in a smaller
oracle.

3.5.5 Limitations. There is an interesting corner case where the
resolution of a reflective call site depends on the JVM used due to
the non-deterministic nature of the order of method annotations
queried via the reflection API [59]. Apparently, this feature is used
by at least one program in the data set we are using, log4j. We found
that the order of annotations is also changed by instrumentation
of the respective methods. We consider this a Heisenbug and think
that it will have no impact on our results as we do not expect that
any static analysis can correctly model the (procedural) logic of
resolving a reflective call site to the first methodm annotated with
annotation a in class c . We expect a static analysis will either find
none of the targets (unsound), or all of them (imprecise), so which
particular one is selected when the oracle is built is irrelevant.

they are isomorphic iffmethod1 = method2 . Otherwise, they are isomorphic iff
method1 =method2 and the ordered lists of children are element-wise isomorphic.
4We used the following simple algorithm: we traversed the tree to compute structural
hashes from the invoked methods and the hashes of the successors for all vertices, and
then looked for siblings with identical hashes. For those candidate roots of isomorphic
branches, we did a recursive structural comparison to avoid hash collision.

3.6 Measuring Reachability and Recall
In order to answer RQs 1-3 we had to measure the recall of the
static analysis with respect to an oracle. For both the SCG and a set
of CCTs (corresponding to different threads encountered during
program execution) we can easily extract sets of reachable methods
with a single traversal: for the SCG, this is just the set vertices, and
for the CCTs, this is the set of methods that occur in any invocation
in any of the CCTs. For a given program, letMSCG andMCCT be
those sets. Then we can define recall as follows:

recall :=
|MCCT ∩MSCG |

|MCCT |

A sound analysis has a recall value of 1, whereas the presence of
false negatives, i.e. methods that are observed when the program
executes, but not computed as reachable by the static analysis,
lowers the recall value. It is important here to remember that the
recall measured here is relative to the oracle that is itself unsound
as it does not reflect all possible program behaviour. We believe that
this is the only possible method to approach the problem as it is
practically impossible to construct a driver that triggers all possible
program behaviours except for trivial micro-benchmarks 5.

Note that our approach uses reachable methods and is therefore
vertex-based, not edge-based. We opted for this approach for the
following reasons:

(1) We have encountered method invocations by the JVM, i.e.,
without visible call sites (see also discussion in Section 3.7). A
vertex-based approach allowed us to capture those methods
as sources of unsoundness.

(2) The recall measured with a vertex-based approach can be
higher than the recall that would have been obtained with
an edge-based approach. This makes our measurements con-
servative. The overall message of our paper is that the recall
observed in practice is relatively low, and this observation
would therefore remain valid even if we switched to an edge-
based approach.

(3) A vertex-based approach to study call graphs is widely used,
examples include [36], [3] and [51].

(4) There are several analysis clients relying on a vertex-based
call graph reachability analysis, including dead code elimi-
nation [31] and static regression test selection [54].

3.7 Cause Analysis and CCT Tagging
In order to answer RQ4we had to analyse which particular language
features were used to spawn branches within a CCT that contain
invocations of methods which were not reachable in the statically
constructed call graph(s). For some features, in particular method
invocations through reflection, this is straightforward: remove ver-
tices corresponding to invocations of Method::invoke from the
CCT, and count the vertices marked as false negatives (with respect
to a static analysis) that are only reachable via (i.e., dominated by)
those vertices. This approach is illustrated in Figure 3. It provides
a measure of the impact the presence of Method::invoke has on
the recall of the analysis. We refer to dynamic features that can be
detected through the presence of certain methods in the CCT as
5This is the approach taken in [52, 59], but this methods is not suitable to quantify the
impact of the issue on real-world input.

On the Recall of Static Call Graph Construction in Practice ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

dynamic invocations (DI). The basic idea is to tag dynamic invoca-
tions with a label corresponding to the language feature (such as
#Method.invoke), and then measure the (percentage of) invoca-
tions corresponding to false negatives in the CCT dominated [34]
by the tagged vertices.

m1:1 m2:2

main:0

m3:3 Method::invoke:4 m5:5

false
negative#Method.invoke

Figure 3: CCT cause analysis for dynamic invocations,
the presence of Method::invoke can explain why m5
is not reachable in the SCG. Invocations are repre-
sented using the following syntax <class-name>::<method-
name>:<invocation-id>

Another common dynamic invocation pattern occurs when lamb-
das are compiled and the invokedynamic instruction is used. We
tracked those invocations by taking advantage of naming patterns
used by the OpenJDK compiler [25].

While we initially expected that dynamic invocations would
explain most analysis false negatives, this was not the case. It turns
out that dynamic allocations (DALL) also have a significant impact.
An example is the use of Class::newInstance. This dynamically
creates an object obj of some type T, and the static analysis has to
track method invocations v.foo() with v pointing to obj. If the
object was not correctly tracked, then devirtualisation would not
be modelled correctly, and the analysis result may contain false
negatives.

m1:1 m2:2

main:0

m3:3

m5:6foo::bar:5

Class::newInstance():4
returns foo

#Class.newInstance

false
negative

Figure 4: CCT cause analysis for dynamic allocations, the
use of Class::newInstance can explain why m5 is not reach-
able in the SCG.

1 void m3(S t r i n g clsName) throws Excep t i on {
2 T foo = C l a s s . forName (clsName) . newIns tance () ;
3 foo . bar () ;
4 }

Listing 3: Invocation of a method with a dynamically
allocated object

Tracking those allocations required additional instrumentation
to enrich the CCT with additional information in form of vertex
labels. Figure 4 illustrates our approach, using the code snippet
from Listing 3. Objects returned by dynamic allocation sites were
tracked, and invocations where this at the call site pointed to such
an object were tagged, with #Class.newinstance in this case.

This tagging can be considered as a form of lightweight dynamic
taint analysis [47], where objects are considered tainted when they
are dynamically allocated. Note that we tracked the last dynamically
allocated object we encountered. In particular, this matters when
considering that Class::newInstance uses Constructor::newInstance.
If an object has been created by Class::newInstance, it was there-
fore already marked as being created by Constructor::newInstance,
however, this annotation was then overridden. Therefore, when
we tagged an invocation with #Constructor.newinstance, this
means that the application had created the object by invoking
Constructor::newInstance directly, not indirectly via the inter-
mediate Class::newInstance.

A situation similar to dynamic allocation arises when an object
is accessed via reflection or similar means, such as a reflective heap
access via Field::get. We refer to this pattern as dynamic access
(DACC), and model it like dynamic allocation by tracking objects
returned by the invocations of these methods. We also tracked
objects returned by native methods. They are also included in the
DALL category, however, we did not track whether the objects
returned were actually newly allocated objects, or already known
objects. So there could be some cases of dynamic access in this
category.

Table 1: Dynamic invocation, allocation and access patterns
used for tagging, (..) means any set of parameter, _ is short
for “java.lang”

invocation pattern tag category
_.reflect.Method::invoke #method.invoke DI
::lambda$ #lambda DI
_.reflect.InvocationHandler::
invoke

#dynproxy.invoke DI

_.invoke.MethodHandle::invoke* #handler.invoke DI
_.Class::newInstance #class.newinstance DALL
_.reflect.Constructor::
newInstance

#constructor.newinstance DALL

java.io.ObjectInputStream::
readObject

#deserialize DALL

sun.misc.Unsafe::getObject #unsafe.getobject DALL
objects returned by native
methods

#nativeallocation DALL

_.reflect.Field::get #field.get DACC
invocations without call sites
in program

#nocallsite SYS

roots of system threads #systemthread SYS

The next pattern we have encountered are false negatives caused
by invocations without matching call sites in the program. There
are methods that are only invoked by the JVM, in particular life
cycle-related methods such as ClassLoader::loadClass. For each
invocation, we checked whether there was a call site for this method
in the parent method (i.e., the method of the parent vertex in the
CCT) and if this was not the case, we tagged the method with
#nocallsite. Closely related to this are methods that were called
from system threads calling back into application code. Examples
are invocations of Object::finalize and user interface event han-
dlers. There are a number of system threads that can be recognised
by name, and we used a special tag #systemthread to tag the roots
of the CCTs generated for these threads. We tracked the follow-
ing threads: Signal Dispatcher, AWT-EventQueue-0, Reference
Handler, AWT-Shutdown, Finalizer and DestroyJavaVM. Note that

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Li et al.

the naming of these system threads depends on the particular JVM
implementation used in the experiments as it is not defined by the
JVM specification. We categorise the invocations tagged with either
#nocallsite or #systemthread as system (SYS). Table 1 lists the
tagged invocation patterns and their respective categories.

Note that there might be multiple possible causes that a method
is not reachable in the SCG. If an invocation corresponds to a static
analysis false negative, there might be multiple tagged invocations
on the path connecting it to the root, offering multiple explanations
of why the respective method in unreachable. In fact, this does not
necessarily indicate that this classification yields false positives as
there might actually be multiple root causes that prevent the static
analysis from computing a method as reachable.

4 RESULTS
4.1 Overview
We conducted experiments to measure the recall of various static
call graph construction techniques with respect to different ora-
cles. This led to a combinatorial explosion in the number of possi-
ble experiments: there are three types of static analyses (context-
insensitive, context-insensitive with reflection support and context-
sensitive), three possible oracles (constructed from built-in, gener-
ated and combined test cases), and the additional parameterwhether
to run the analysis in library or whole program (super jar) mode.
This implies that 18 computationally expensive experiments had
to be conducted and reported for each of the 31 programs, making
both the execution and reporting challenging. To deal with this,
we prioritised experiments and proceeded as follows. We first mea-
sured the recall of the baseline context-insensitive (base) analysis
with respect to the oracles provided by built-in, generated and com-
bined test cases, for both the library and the superjar configuration,
the results answer RQ1 and are reported in Section 4.2. The impacts
of context sensitivity (RQ2) and reflection support (RQ3) were then
assessed and are reported in Sections 4.3 and 4.4. False negatives
are further investigated in detail in Section 4.5 in order to answer
RQ4. For RQs 2-4, we restricted the experiments to always use
the combined set of (generated and built-in) tests, and the library
analysis mode.

We report the run times of the respective experiments in Table
2. While the analysis of performance was not one of our research
questions, performance did have an impact on our methodology,
and matters as it is part of the trade-off that is being made when
choosing a static analysis. Note the high cost of running the in-
strumented tests (not taking into account the already very high
cost of generating tests, reported in [16]), and of running the static
analysis with reflection support, with only 20 experiments avoiding
time outs (set to 6 hours) 6 7. For all experiments, Java 1.8.0_144-
b01 (Java HotSpot(TM) 64-Bit Server VM, build 25.144-b01, mixed
mode), running on a Ubuntu OS was used. The heap size of the

6For the following programs, the analysis with reflection support did not time out:
checkstyle-5.1, commons-collections-3.2.1, informa-0.7.0-alpha2, findbugs-1.3.9, fitjava-
1.1, javacc-5.0, jena-2.6.3, jFin_DateMath-R1.0.1, jfreechart-1.0.13, jgrapht-0.8.1, jrat-0.6,
jrefactory-2.9.19, marauroa-3.8.1, nekohtml-1.9.14, openjms-0.7.7-beta-1, oscache-2.4.1,
pmd-4.2.5, quartz-1.8.3, trove-2.1.0, velocity-1.6.4
7The timeout of 6 hours chosen is at the upper end of the time outs used in related
work: [36, 51] – 90 mins, [37, 39, 57] – 3 h, [21, 27] – 4 h, [28] – 6 h, [29] – 7 h.

JVM was set to 16GB for the CCT recording, 256GB for the CCT
reduction and 384GB for the static analyses.

Table 2: Experiment run times

analysis programs analysed median max
CCT recording 31 5h 5mins 76h 4mins
CCT processing 31 12h 144h
SCG construction (base, lib) 31 3mins 31mins
SCG construction (base, super) 31 3mins 39mins
SCG construction (ctx-sens, lib) 31 8mins 3h 54mins
SCG construction (refl, lib) 20 1h 36mins 5h 42mins

4.2 The Recall of Static Program Analysis
To answer RQ1 we measured the recall of the base static analysis.
The recall values for the context-insensitive baseline analysis are
depicted in Figure 5. While in general the recall values (combined
tests, the static analysis uses the lib setup) were high with a median
of 0.884 , the “unsoundness” gaps were still significant, indicating
that the static analysis typically misses around 11% of the known
reachable methods. We also computed the recall with respect to the
oracles obtained by the built-in and generated tests separately. The
recall with respect to the oracle obtained with built-in tests was
significantly lower (median 0.859) than the recall obtained using
the generated test oracle (median 0.904). This suggest an interest-
ing characteristic of built-in tests – they are better in penetrating
code that uses dynamic language features than the generated tests.
Note that this result was obtained with tests generated with one
particular test generation framework – evosuite . The likely expla-
nation is that test case generators (at least evosuite) have to deal
with similar problems as static analysis to reason about dynamic
language features as intended by the programmer.

Figure 5: Recall of the base static analysiswith respect to ora-
cles obtained by executing built-in, generated and combined
tests, for both lib and superjar mode

Figure 5 also indicates that there is no significant difference be-
tween the library and the superjar analysis mode. This indicates
that dynamic language features are not used at component bound-
aries. We note however that there are programming patterns that
do exactly this, but none of the program in the data set uses them.
The use of a plugin-like model used in JDBC 4 with service locators
is such a model [7, Section 9.2.1].

On the Recall of Static Call Graph Construction in Practice ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

We also investigated whether the false negatives are methods de-
clared in core Java (methods are declared in classes within java.*
packages), extended Java (other official packages that are part of
the Java Runtime Library, such as javax.*, org.omg.*), Java pri-
vate (sun.*, com.sun.*, com.oracle.net) or application-defined
(everything else, including application and third-party library pack-
ages). The average percentages of false negatives in the respective
categories are as follows: 22.25% Java core, 10.51% Java extended,
46.50% Java private and 21.47% application. The high number of
methods defined in Java-private classes stands out, this is consis-
tent with the results of the cause analysis discussed in Section 4.5.
The number of methods in application classes missed by the static
analysis is still significant.

4.3 The Impact of Context-Sensitivity
In order to answer RQ2 we measured the recalls with respect to
the oracle created by executing all tests for both the base (context-
insensitive) analysis and a context-sensitive analysis as described
in Section 3.4. The results are depicted in the second column of Fig-
ure 6, the median recall is 0.880 . It turns out that gaining precision
(i.e., eliminating false positives) has very little impact on the recall.
I.e. there are very few false negatives that were covered by the false
positives of the less precise context-insensitive analysis.

Figure 6: Recall of base vs context-sensitive analysis and re-
flection (ref) analysis. The numbers in brackets indicate the
size of the data set used, the base analysis data are provided
for both the full data set (column 1) and the reduced data set
(column 3)

4.4 The Effectiveness of Dynamic Language
Feature Support in Static Analysis

To answer RQ3 we compared the recall obtained by the base analy-
sis with the analyses with reflection support being enabled. This
allowed us to measure the effectiveness of state-of-the-art support
for reflection and similar dynamic language features. Unfortunately,
the additional reasoning doop has to perform is resource-intensive
and timed out for several programs, as detailed in Table 2. There-
fore, the results summarised in columns 3 and 4 in Figure 6 were
obtained with a smaller dataset only consisting of 20 programs 8.
8checkstyle-5.1, commons-collections-3.2.1, informa-0.7.0-alpha2, findbugs-1.3.9, fitjava-
1.1, javacc-5.0, jena-2.6.3, jFin_DateMath-R1.0.1, jfreechart-1.0.13, jgrapht-0.8.1, jrat-0.6,

In general, the reflection support in doop is very effective – the
median recall increases significantly from 0.884 to 0.935 .

4.5 Quantifying the Causes of Unsoundness
In order to answer RQ4, we removed tagged vertices from the CCTs
and measured the percentage of false negatives (with respect to
a given static analysis) still reachable as described in Section 3.7.
The results for the base analysis are shown in Figure 7. This figure
summarises the percentages of false negatives that can be explained
by the presence of the respective class of language features across
the dataset. The figure uses the aggregated categories, also showing
statistical variation. Details are shown in Table 3. It turns out that
dynamic invocations are only a minor source of false negatives, in
particular the presence of Method::invoke can only explain less
than 10% of the false negatives. Invocations triggered by methods
invoked by the JVM and different types of dynamic allocations
can explain the majority of false negatives. Note that the data set
consists mainly of older programs, and features such as lambdas
are likely to be under-represented 9. The only programs where
we found false negatives caused by dynamic access are wct-1.5.2
and guava-21.0. Other categories that have overall little impact are
allocations when objects are deserialised, dynamic proxies, and
Unsafe::getObject. However, a significant part of programs uses
dynamic proxies and Unsafe::getObject. More generally, we
detected at least some usage of each of the features / patterns
investigated when executing the programs in the data set.

Table 3 also contains the detailed classification of the false nega-
tives left when running the static analysis with reflection support.
The base analysis for the reduced data set is also included in or-
der to make the base and the reflection data comparable. Figure 8
shows the variation of recall values across the data set. We observe
that reflection support addresses a significant share of false neg-
atives caused by Method::invoke. It addresses all false negatives
caused by dynamic proxies (invocation handlers) in 3/5 programs,
and all false negatives caused by allocation via deserialisation (al-
though there were only 2 programs in this category). For the system
category, the percentages increase, indicating that doop reflection
support is relatively ineffective for these categories.

Figure 7: Causes of false negatives in the base static analysis

jrefactory-2.9.19, marauroa-3.8.1, nekohtml-1.9.14, openjms-0.7.7-beta-1, oscache-2.4.1,
pmd-4.2.5, quartz-1.8.3, trove-2.1.0, velocity-1.6.4
9[16] contains an overview of the language features used by the xcorpus programs

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Li et al.

Figure 8: Causes of false negatives in the static analysis with
reflection support

Table 3: Detailed classification of false negatives for the base
analysis of the full dataset, and the base and reflection analy-
sis on the partial dataset of 20 programs for which reflection
analysis succeeded in percent (# - number of programs with
more than one false negative in this category).

category (tag) base (31) base (20) reflection
avg stdev # avg stdev # avg stdev #

#method.invoke 8.08 8.88 29 7.14 8.44 18 4.22 4.53 16
#lambda 0.10 0.16 16 0.10 0.18 10 0.01 0.04 1
#handler.invoke 1.45 1.98 24 1.73 2.42 14 2.98 4.13 14
#dynproxy.invoke 0.42 0.80 14 0.21 0.56 5 0.26 0.81 2
#class.newinstance 21.36 14.31 29 19.62 14.12 18 20.64 17.03 18
#constr.newinstance 5.97 6.41 28 4.76 5.53 17 5.61 6.82 17
#deserialize 0.01 0.06 3 0.02 0.08 2 0 0 0
#unsafe.getobject 0.15 0.30 9 0.18 0.35 6 0.27 0.52 6
#nativeallocation 40.00 12.67 31 41.81 12.7 20 36.24 14.41 20
#field.get 0.08 0.40 2 0 0 0 0 0 0
#nocallsite 52 22.51 31 47.27 19.34 20 52.49 20.57 20
#systemthread 2.57 3.25 31 3.41 3.8 20 4.82 4.88 20
other 17.94 11.39 31 17.96 11.14 20 13.83 10.74 20

We then analysed the percentage of false negatives left after all
tagged vertices were removed from the CCTs, this is the number of
uncategorised false negatives presented in the last columns labelled
Other in Figures 7 and 8. It represents the (in)completeness of our
automated cause analysis. We manually analysed a sample of false
negatives in theOther category, aiming for a confidence level of 95%
and a confidence interval of 5%. This yielded a sampling size of 373
for the base and 344 for the reflection analysis. We then randomly
extracted the respective number of CCT paths from the respective
CCT root to an uncategorised false negative, and inspected them. It
turns out that they are dominated by a single pattern we refer to as
double-reflective factory, which we discuss in some more detail next.
This accounted for 54.4% of the uncategorised false negatives in
the base analysis and 51.5% of the uncategorised false negatives in
the analysis with reflection support. There are some other patterns
we detected, we omit the detailed discussion for space reasons.

The double-reflective factory is a particular use of the factory
design pattern [24] in conjunction with reflection, used to manage
character sets. To illustrate this, consider the stack trace caused
by an invocation of System.out.println() in Listing 4. Using
both the base and the reflection analysis, encodeLoop is unreach-
able in the statically computed call graph. The encoder is created
by the Charset (sun.nio.cs.UTF) which is created via reflection
(Class::forName and Class::newInstance) by a CharsetProvider

(sun.nio.cs.FastCharsetProvider) which is in fact itself also
created using reflection by a service loader from jar manifest meta
data. This is a triple factory, with two of the factories using reflec-
tive allocation. This is a good example of framework complexity
Java is known for. While our analysis tags the factories as dynami-
cally allocated, it does not do this to the objects created in those
factories using plain object allocation with new. While an extension
of our mechanism to cover such cases is possible, we decided not to
do this in the scope of this work as our cause analysis had reached
a coverage we considered as sufficient to confidently answer RQ4.

1 sun . n io . c s . UTF_8$Encoder : : encodeLoop (L j ava / n io / Cha rBu f f e r ; L j ava /
n io / By t eBu f f e r ;) L j ava / n io / c h a r s e t / Code rRe su l t

2 j a v a . n io . c h a r s e t . Char se tEncoder : : encode (L j ava / n io / Cha rBu f f e r ; L j ava
/ n io / By t eBu f f e r ; Z) L j ava / n io / c h a r s e t / Code rRe su l t

3 sun . n io . c s . S t reamEncoder : : imp lWr i te ([C I I)V
4 sun . n io . c s . S t reamEncoder : : w r i t e
5 j a v a . i o . OutputS t reamWri te r # wr i t e ([C I I)V
6 j a v a . i o . Bu f f e r e dWr i t e r # f l u s h B u f f e r () V
7 j a v a . i o . P r i n t S t r e am : : newLine () V
8 j a v a . i o . P r i n t S t r e am : : p r i n t l n (L j ava / l ang / S t r i n g ;) V
9 ne t . s o u r c e f o r g e . pmd . u t i l . d e s i g n e r . MyPr intStream : : p r i n t l n (L j ava /

l ang / S t r i n g ;) V

Listing 4: Stacktrace created by the invocation of
PrintStream::println

We also sampled the nocallsite and systemthread categories, fo-
cusing on false negatives defined in applications or third-party
libraries. It turns out that for the base analysis, 9/31 programs
have such false negatives in the systemthread category, and 28/31
programs have such false negatives in the nocallsite category. Us-
ing the same sampling procedure as described above, we found
that 86% of the application false negatives in the nocallsite cate-
gory are caused by static initialisers (<clinit> methods) invoked
by the JVM. Another example are invocations of Runnable::run
methods through native dispatch from java.security.Access-
Controller::doPrivileged. Reflective method invocations are
also classified in this category due to the native dispatch in sun.re-
flect.NativeMethodAccessorImpl#invoke0, in the sampling set,
this accounted for 4.8% of cases. Sampling application-defined meth-
ods classified as systemthread reveals that those can all be explained
by invocations of finalize in application classes in the Finalizer
thread.

4.6 Threats to Validity
The test unreflection process described in Section 3.3 has limitations
as junit features such as tests with rules and custom runners were
ignored, i.e., not unreflected. This has reduced the coverage of the
oracle.

Test flakiness [44] is a know issue that affects test outcomes,
including coverage. We found small variations in test coverage in
14 of the 31 programs between executions. Figure 2 uses averages
from five runs, the oracle used was generated by a single run. The
reason for this decision is the high cost of oracle generation (see
Table 2). In some cases, a slightly larger oracle could have been
obtained by running the (instrumented) tests multiple times, and
merging the constructed CCTs.

The classification method discussed in Section 3.7 can explain
most, but not all false negatives. We addressed this by sampling
and manual analysis.

On the Recall of Static Call Graph Construction in Practice ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

The tagging of lambdas relies on naming patterns used by the
OpenJDK compiler. There is a possibility that some of the library
code within the analysis scope has been compiled with a different
compiler using a different convention. This would have resulted in
more false negatives not being classified, as mentioned above, this
was addressed by sampling.

Tagging with #nocallsite relied on a static pre-analysis to
collect the call sites in methods. For libraries, this depends on the
library version used. There is a chance that in some cases programs
use custom class loaders, choosing a different version of the class.
This would have resulted in methods being incorrectly tagged as
#nocallsite, and in an over-reporting of false negatives in this
category.

5 CONCLUSION
We have studied the recall of static call graph construction, and the
impact various analysis settings have on recall. The recall values we
measured are an approximation obtained by substituting possible
by known program behaviour recorded by executing high-coverage
test suites. The results indicate that there are significant gaps in the
statically constructed call graphs – many methods that are known
to be reachable are missed. While state-of-the-art analysis with
reflection support can significantly improve recall, its high cost
renders it impracticable for many practical application. The results
further indicate that some language features suspected in being a
major cause of unsoundness (in particular Method::invoke) play
only a minor role. The classification of static analysis false negatives
hints at directions for future research to boost recall: to include the
analysis of native methods and the JVM itself 10.

The fact that dynamic analysis reveals a significant number of
false negatives in the static analysis also indicates that hybrid tech-
niques can be very effective. In particular, generated tests can be
used to discover program behaviour that is out of reach of static
analyses. However, there are limitations: like static reflection anal-
ysis, test generation is expensive [16], and our study demonstrated
that it is not as effective in discovering dynamic program behaviour
as the manually written tests.

ACKNOWLEDGEMENTS
This project was supported by the Science for Technological Inno-
vation National Science Challenge of New Zealand, project “Clos-
ing the Gaps in Static Program Analysis” (PROP-52515-NSCSEED-
MAU). The work of the second author was supported by Oracle
Labs, Australia. We would like to thank Francois Gauthier, Paddy
Krishnan, James Noble and Yannis Smaragdakis for their valuable
feedback.

REFERENCES
[1] [n. d.]. Invokedynamic Rectifier / Project Serializer. http://www.opal-project.de/

DeveloperTools.html, accessed 14 Jan 2019.
[2] [n. d.]. Standard Performance Evaluation Corporation: SPEC JVM98 Benchmarks.

10We note that doop models some native methods, including Object::-
clone and some methods in java.lang.System, sun.misc.Unsafe,
java.io.UnixFilesystem, java.lang.Thread, java.lang.ref.Finalizer,
and java.security.AccessController.
However, these models are still unsound and, as Grech et al. noted, such manual
modelling "... is hard. Extra native operations get added in every release of the JDK
and analysis authors typically do not keep up with them." [26].

[3] Karim Ali and Ondřej Lhoták. 2013. Application-only call graph construction. In
Proc. ECOOP’13. Springer.

[4] Karim Ali and Ondřej Lhoták. 2013. Averroes: Whole-program analysis without
the whole program. In Proc. ECOOP’13. Springer.

[5] Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. 2015. Combining
type-analysis with points-to analysis for analyzing Java library source-code. In
Proc. SOAP’15. ACM, 13–18.

[6] Glenn Ammons, Thomas Ball, and James R Larus. 1997. Exploiting hardware
performance counters with flow and context sensitive profiling. ACM Sigplan
Notices 32, 5 (1997), 85–96.

[7] Lance Andersen. 2006. JDBC™4.0 Specification. JSR 221 (2006), 1–126.
[8] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated unit test

generation for classes with environment dependencies. In Proc. ASE’12. ACM.
[9] David F Bacon and Peter F Sweeney. 1996. Fast static analysis of C++ virtual

function calls. In Proc. OOPSLA’96. ACM.
[10] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proc. OOPSLA’06. ACM.

[11] Eric Bodden. 2012. InvokeDynamic Support in Soot. In Proc. SOAP’12. ACM.
[12] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.

Taming reflection: Aiding static analysis in the presence of reflection and custom
class loaders. In Proc. ICSE’11. ACM.

[13] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses. In Proc. OOPSLA’09. ACM.

[14] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

[15] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic robust-
ness tester for Java. Software: Practice and Experience 34, 11 (2004), 1025–1050.

[16] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus–An
executable Corpus of Java Programs. JOT 16, 4 (2017), 1:1–24.

[17] Jens Dietrich, Li Sui, Shawn Rasheed, and Amjed Tahir. 2017. On the construction
of soundness oracles. In Proc. SOAP’17. ACM.

[18] Michael D Ernst. 2003. Static and dynamic analysis: Synergy and duality. In Proc.
WODA’03.

[19] Stephen Fink and Julian Dolby. 2012. WALA–The TJWatson Libraries for Analysis.
https://github.com/wala/WALA.

[20] Brian Foote and Ralph E Johnson. 1989. Reflective facilities in Smalltalk-80. In
Proc. OOPSLA’89. ACM.

[21] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018. Static
Analysis of Java Dynamic Proxies. In Proc. ISSTA’18. ACM.

[22] George Fourtounis and Yannis Smaragdakis. 2020. Deep Static Modeling of
invokedynamic. In Proc. ECOOP’19.

[23] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proc. ESEC/FSE’11. ACM.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design
patterns: Abstraction and reuse of object-oriented design. In Proc. ECOOP’93.
Springer.

[25] Brian Goetz. 2012. Translation of Lambda Expressions. http://cr.openjdk.java.
net/~briangoetz/lambda/lambda-translation.html.

[26] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
2017. Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots. In Proc.
OOPSLA’17. ACM.

[27] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
2018. Shooting from the heap: Ultra-scalable static analysis with heap snapshots.
In Proc. ISSTA’18. ACM.

[28] Neville Grech, George Kastrinis, and Yannis Smaragdakis. 2018. Efficient reflec-
tion string analysis via graph coloring. In Proc. ECOOP’18. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[29] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint
analysis. In Proc. OOPSLA’17. ACM.

[30] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call graph
construction in object-oriented languages. In Proc. OOPSLA’97. ACM.

[31] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial dead code
elimination. In Proc. PLDI’94. ACM.

[32] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. In Proc. CETUS’11.

[33] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. 2017. Challenges for
Static Analysis of Java Reflection-Literature Review and Empirical Study. In Proc.
ICSE’17. IEEE.

[34] Thomas Lengauer and Robert Endre Tarjan. 1979. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Programming Languages and
Systems (TOPLAS) 1, 1 (1979), 121–141.

[35] Ondrej Lhoták. 2007. Comparing call graphs. In Proc. PASTE ’07. ACM.
[36] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Precision-guided

context sensitivity for pointer analysis. In Proc. OOPSLA’18. ACM.

http://www.opal-project.de/DeveloperTools.html
http://www.opal-project.de/DeveloperTools.html
https://github.com/wala/WALA
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Li et al.

[37] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-first
pointer analysis with self-tuning context-sensitivity. In Proc. ESEC/FSE’18. ACM.

[38] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing reflection
resolution for Java. In Proc. ECOOP’14. Springer.

[39] Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and Analyzing Java
Reflection. ACM Transactions on Software Engineering and Methodology (TOSEM)
28, 2 (2019), 7.

[40] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015. The Java
virtual machine specification: Java SE 8 edition, 2015. (2015). https://docs.oracle.
com/javase/specs/jvms/se8/html/index.html.

[41] Jie Liu, Yue Li, Tian Tan, and Jingling Xue. 2017. Reflection Analysis for Java:
Uncovering More Reflective Targets Precisely. In Proc. ISSRE’17. IEEE.

[42] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. CACM
58, 2 (2015), 44–46.

[43] Benjamin Livshits, John Whaley, and Monica S Lam. 2005. Reflection analysis
for Java. In Proc. APLAS’05. Springer.

[44] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In Proc. FSE’14. ACM.

[45] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias
Hauswirth, and Nathaniel Nystrom. 2015. Use at your own risk: the Java unsafe
API in the wild. In Proc. OOPSLA’15. ACM.

[46] Gail C Murphy, David Notkin, William G Griswold, and Erica S Lan. 1998. An
empirical study of static call graph extractors. ACM TOSEM 7, 2 (1998), 158–191.

[47] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature Generation of Exploits on
Commodity Software. In Proc. NDSS’05. Internet Society.

[48] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Proc. OOPSLA’07. ACM.

[49] Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro.
2019. Java reflection API: revealing the dark side of the mirror. In Proc. FSE’19.
ACM.

[50] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
2016. Call graph construction for java libraries. In Proc. FSE’16. ACM, 474–486.

[51] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini.
2019. Judge: Identifying, Understanding, and Evaluating Sources of Unsoundness
in Call Graphs. In Proc. ISSTA’19. ACM.

[52] Michael Reif, Florian Kübler, Michael Eichberg, andMiraMezini. 2018. Systematic
Evaluation of the Unsoundness of Call Graph Construction Algorithms for Java.
In Proc. SOAP’18. ACM.

[53] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their
decision problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366.

[54] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Marinov, and Owolabi Legun-
sen. 2019. Reflection-aware static regression test selection. In Proc. OOPSLA’19.
ACM.

[55] Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Disser-
tation. Carnegie Mellon University.

[56] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. 2015. More sound static handling of Java reflection. In Proc. APLAS’15.
Springer.

[57] Yannis Smaragdakis and George Kastrinis. 2018. Defensive Points-To Analysis:
Effective Soundness via Laziness. In Proc. ECOOP’18. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[58] Brian Cantwell Smith. 1984. Reflection and semantics in Lisp. In Proc. POPL’84.
ACM.

[59] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. 2018. On
the Soundness of Call Graph Construction in the Presence of Dynamic Language
Features-A Benchmark and Tool Evaluation. In Proc. APLAS’18. Springer.

[60] Li Sui, Jens Dietrich, and Amjed Tahir. 2017. On the Use of Mined Stack Traces to
Improve the Soundness of Statically Constructed Call Graphs. In Proc. APSEC’17.
IEEE.

[61] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical virtual method
call resolution for Java. In Proc. OOPSLA’00. ACM.

[62] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. Qualitas Corpus: A Curated Collection
of Java Code for Empirical Studies. In Proc. APSEC’10. IEEE.

[63] Frank Tip and Jens Palsberg. 2000. Scalable Propagation-based Call Graph Con-
struction Algorithms. In Proc. OOPSLA’00. ACM.

https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Call Graph Construction
	2.2 Handling of Dynamic Language Features
	2.3 Hybrid Analyses
	2.4 Empirical Studies

	3 Methodology
	3.1 Oracle Construction
	3.2 Dataset Acquisition
	3.3 Static Entry Point Generation
	3.4 Static Call Graph (SCG) Construction
	3.5 Context Call Tree (CCT) Construction
	3.6 Measuring Reachability and Recall
	3.7 Cause Analysis and CCT Tagging

	4 Results
	4.1 Overview
	4.2 The Recall of Static Program Analysis
	4.3 The Impact of Context-Sensitivity
	4.4 The Effectiveness of Dynamic Language Feature Support in Static Analysis
	4.5 Quantifying the Causes of Unsoundness
	4.6 Threats to Validity

	5 Conclusion
	References

